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1. INTRODUCTION

The statistical properties of estimators of signal-to-noise ratio of acoustic
tones are needed in ongoing studies of acoustic signal processing (Task No.DST
79/069 - Signal Processing for Underwater Detection) in areas as widely separated
as measurement of acoustic transmission loss and signal detection theory. In a
previous paper by the author(ref. 1) an expression was derived for the probabil-
ity density function of an estimate of the signal-to-noise ratio of a sine wave
in Gaussian noize. The estimate was obtained from the power spectrum of a
sampled data sequence. The analytic results in reference 1 have been used to
obtain functional forms for the coefficient of variation of signal-to-noise ratio
estimates derived from data obtained from several sea-going experiments. The
agreement between analysis and experiment was found to be excellent,

Reference 1 did not address the situation where the spectrum used for estimation

was obtained as the average of a number of spectra derived from consecutive
sequences of data samples. This present paper gives a solution to this problem

by using a characteristic function approach with the aid of some integrals presented
in Appendix I. The problem is to find the distribution of z

r N
N
1 ZE; X.
ﬁ‘ 1
2 = 1} (1)
p N
1 1 Yoy,
DR
L =1 i=1 ]

where Xy is the power in the signal bin for the i-th spectral estimate and yij
is the power in the j-th noise bin for the i-th spectral estimate.

The noise bin must not include the signal bin or contain extraneous signal
residues.

N is the number of spectra from which an average spectrum is obtained.

p is the number of noise bins in the average spectrum used to estimate noise
power

%-is the bin width in Hertz.

Equation (1) can be rewritten as
N ]
z =|B zEJ X3

T

1
-y (2)

v ma e
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Before proceeding with the development of the solution, some results of a standard
nature are summarised from reference 2 in order to aid in reading this paper, viz:

(1) The characteristic function of a random variable x with probability
density function f(x) is given by

¢ (1) = / dx exp(jtx) £(x) (3)

-00

(2) The characteristic function of the sum S of N random variables whose
individual characteristic functions are ¢(t) is

bs(t) = foe)™ 4)

(3) If ¢(t) is absolutely integrable over the range (-°°, °¢) then

f[ dt exp(-jtx) ¢(t) (5)

-0

f(x) = -15”-

2. THE CHARACTERISTIC FUNCTION OF SIGNAL PLUS NOISE POWER

For a single spectral estimate the probability density function of the signal +
noise power is given by equation (7) of reference 1. Note that the nomenclature
is the same, ie:

£(x) = A® exp[-A'(x + K)} I (2A* RA), x>0 (6

= 0,x< 0

where IO(.) is the modified Bessel function of zero order. The characteristic

function of this density function is then, after a simple rearrangement, given by

() = A exp(-A* K?) [ dx exp { -(A* - jt) x} I (2A*KVK) (7

0

By making the elementary substitutions

a = A? exp(-A? K*)

B = A* - jt

vy = 2j A K ®
uo= A

“TLPATEIGYIE e v AER W AT PONT BVN e o A ey ey DN, o
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and using the relation Io(u) = Jo(j#) the characteristic function can be written

as

o(t) = 2 f du i exp(-f ') J_(TH) (9)
0

Applying the formula I.1 from the Appendix I gives

2
sty = g exptp (10)
ie -
p(2) = A H} exp(-A* K*) exp {_-A‘ K2 <—§—:—-§>} (11)

3. THE PROBABILITY DENSITY FUNCTION OF SIGNAL PLUS NOISE POWER

The density function derived in this section is for the summation in the numerator
of equation (2).

For the sum of N terms each distributed as in equation (6)

_ N _ ‘a\WN Ny? 12)
Poum = LW = \B‘) oxP {w}

... from equation (10)

Hence the probability density function for the sum is

1 r @\ =\
£(x) = —— / dt@—> exp(-jt x) exp (T) (13)

« 00

..., from equation (5)

As B is a function of t, viz § = A’ - jt, the integral can be rewritten in terms
of B to give, after some rearrangement:

A? - joo
. N
f(x) = -;—:— exp(-A’ X) / dﬁ;l_\l exp (x8 -%) (14)
AP & oo

Using the formula I.2 in the Appendix 1 gives, after some algebra:

fx) = A /EXNN-D/2 0 0y . Nk 31 (2382 BAR)

5N-1 g2/
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The Bessel function of the first kind of order n is related to the modified
Bessel function of order n by

L& = NI G0

fx) = A (ﬁz)m'l)/ 2 exp [ -A% (x + NK T (282 K WA) (15)

4. THE PROBABILITY DENSITY FUNCTION OF THE NOISE POWER

From reference 1, equation (8), each term yij in the denominator of equation (2)
. . . 2
is distributed as X 2,1/A 3 °

Hence, using the well-known addition theorem(ref.zz for X! variates, the double
summation term in equation (2) is distributed as X 2pN, 1/A\/§—ie:

if

- _Ziyu

P
j=1 i=1

aZPN PN, ypN-l .exp(-A2y)

£f,(0) =
ut 2PN, rpN)

2pN -1
A P .ypN .exp(-Azy)

I'(pN)

5. THE PROBABILITY DENSITY FUNCTION FOR THE SIGNAL-TO-NOISE
RATIO ESTIMATOR

The probability density function for the ratio of the summation terms in

equation (2) can now be obtained by applying the classical relation given in

Parzen(ref.2) for the density of the ratio of two independent positive random
variables, viz: )

£y = ] £, ()£, (x) dx 17)
0

4

RGP S LT F e Y RIS TSN Ty R g e
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ie
it 2 yx (N-1)/2 )
tx/Y(y) = /. dx x A {NK } exp(-A“ (yx+NK ))
0 (18)
IN_l(ZAzK viNxy) aZPN ,PN-1 exp(-Azx)
X L (pN)
Gathering terms independent of x gives
N2y B2 exponaZidy (19
T'(pN) NK
The integral rearranges to
o0
f ax PN D2 p (a1 x(ye1)) 1, (20 KRY) (20)
0

As stated previously a simple relation holds between the modified Bessel functions
and the Bessel functions of the first kind, ie:

-k .
L = 3" J,0%) (21)
Hence the integral becomes
o0
f dx xPNFON-10/2 A x(ye1y) 5N 31 (20 K5 VAYX) (22)
0

With the substitution 4° = x the integral becomes

[~ -]
25N+l / d # wPPVN oxp (A7 (ye1) 1) 3L QAPKAY )
0
1 a-1
= 27" ] du i exp(-B? 1) 3 (v m) (23)

0

where the substitutions
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a = 2pN+N+1
1 ).
L B = A(ysD)

v = 28Ky

are distinct from the use previously made in manipulating equation (7).

A simple application of the formula given by equation I.1 in the Appendix I
enables the integral (22) to be evaluated to be evaluated to give

_-N+1 ., @+n-1 N-1 _ a+N-1 2
T PET T MEE N, - T

2 2 (24)
1
; Substitution for a, B, ¥ gives, after some rearrangement:

[ (pN+N) KN—l N(N—l)/2 y (N-1)/2 M(pN+N,N, NAZ K2 §§¥i)) (25)

PNy A2PY2 () PR
Forming the product with (19) gives, after some algebra:
22y N-1
£y = ZRLEAE) L ML N () (26)
B (pN,N) (y+1)

where 8(...) is the bivariate f-function.

The distribution of z as defined by equation (2) then follows from
. rz+l
f(2) = pr< P ) )
=2, .1 ;
where z = b ;—from equation (2).

The above is simply derived from the classic relation(ref.2)

1 y-b
foxep) = Y N ) (28)
pN _-Na%K? N-1 rz+l
T pt e’ (rz+1) M(pN+N,N,NA (;E:_:T)) (29)
le £,(2) = pN+N P
B (pN,N) (rz+p+1)

A simple consideration of equation (2) indicates that z will only take values in

<z <oe

e X L
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6. THE MEAN AND VARIANCE OF THE SIGNAL-TO-NOISE RATIO ESTIMATOR

The mean and variance of z follow readily from the moments of y, where y is the
ratio of the summation terms appearing in equation (2). The moments of y can be
derived from the density equation (26), ie:

2 oo YIH-(N-l)
n. _ exp(-NA"K") —_— 22, Y
Ely'] NN f 4 (yayPVN MOPNN, NN 7)) (30)

0

A scries expansion for M(.,.,.) written in the form

r .
M(a,b,z) T-Q’l Z P(f;; =5 (31)

can be substituted in the above equation to give, after reversing the order of
integration and summation and using the I'-function form of the f-function:

o0 r = yn+N—1+r
ny, _ exp(-NA’K*) (pN+N+r) (NA?K®)" ———— (32)
SRR ) Z () T Y ey PN

0

As shown in the derivation I.3 in the appendix the integral is simply the
f-function

B ((n+N+r), (pN-n))

This B-function can be written in terms of appropriate I'-functions and after a
rearrangement of terms the n-th moment of y can be written as

Y™ = exp(-xk) EQULID. yovun N Na i) (33)
(pN,N)
Hence
22
Byl = X e"ph(I:’;A K9 M(N+1,N,NAZ ) (34)

A simple application of the formulae 13.4.1 and 13.6.12 in Abromawitz and Stegun
(ref.3) gives

N(1+A2K?)
LML

Elyl = PN=

(35)

A similar application of the same formulae enables the second moment of y to be
written

K2 +N+2) (1+A7K?) -1} (36)

N
= —— 2
YT - ey (O

B o . aaaan e R EE A T S LT PN
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From equation (2)

= P -
Elz] = T El yl

"=

and

var(z) = B {E[y’] ] EZ[y]}

Hence precise expressions can be written for the mean and variance of z, ie:

pN(1+A2K?)

Bl 2] TTN-

-1
T

and

r? (pN-1)* (pN-2)

var(z) = E i;NzAdld + IN(pN+N-1)A’K? + (pN*+N? -rﬂ}

And, the coefficient of variation defined as

ag
¢ * Ha

where 0 is the standard deviation can be written down immediately.

Substituting N=1 in equations (39) and (40) gives

B 2] p(1+A2K%) 1
r(p-1) T
2 ,a 242 s
var(z) = %EAK‘ * 2pAK *Iii
L p-2
and after some algebra
1.
p r AYKA 4+ 2pA P +p}2
c pA’K: + 1 p-2

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

These are precisely the respective equations developed in reference 1 and hence

equations (42), (43) and (44) supply a partial validation of the analysis
contained in this memorandum.
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7. AN ALTERNATIVE DERIVATION

On realising (note the acknowledgement at the end of this paper) that the quotient
in equation (1) is the ratio of a non-central chi-squared variate (with 2N degrees
of freedom) to a chi-squared variate with 2pN degrees of freedom ie the quotient
has the distribution of a non-central F distribution, it is possible to derive
the formulas equations (29), (38) and (40) as particular cases of a more general
formula, The non-central F with ¥, degrees of freedom in the numerator and

v, degrees of freedom in the denominator has a probability density function

_ exp(-M/2) ;v | vi/2 n/2 -1
fY(Y) = (vz/z) Lv; } ! Z !

N (Vo +V2)/2 F(wy +v2)/2 + j)
e "ZjémﬁiT?fL
j=0
- j -3
X %’“’_; } {}_L%_z} (45)

where A is the non-centrality parameter. This equation can obviously be written
as

vy /2 z”l/Z -1

_ exp(-A/2) vy )
fY(Y) = (Vz/Z) LV_;'))

3 1 + Vl Z} -(Vl * VZ)/Z F((v, + v:)/Z)
b'e —
t V2 L:1/2)

wy + vy , vy, zZAV;
M= = v (46)

On making the substitutions
Vv, = ZN, vV, = sz N A = ZNAz Kz

and carrying out some elementary algebra
NAZ K2
exp(-N AK) y" p”" MN + NN, P+ ) an
BN, N (v + P T

-1

£y () =

In this alternative derivation z = 1y - 1
T T

AL i Ve Bl s A4S
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Hence
fz(z) = rfY(rz +1)

as a result of applying equation (2)

pN 22 N - 1 202 .{u_l
rp° exp(-NA*K‘) (rz + 1) M(pN+N,N,NA* K* | rz+p+1{ )
B(N,N) (rz + p+ 1PN * N

ie fZ(z) =

which agrees with equation (29).

The nth order moment of the non-central F-distribution to be derived from
equation (45) involves evaluating an integral

oo v 2‘1 .

dy y" y*/ y’

14 14 V. 2 14 j
0

The integral can be written as

(49)

where

i = n+j+= -1,C = —= + j,a =

:lv
N e

On making the substitution az = 4 the integral becomes

S .
aCl + 1 / d“ (1 + ”)Cz

0

;6;-1:—1— B(Ca -Cy -1, C + 1) (50)

On substituting this integral in the appropriate expression for E[yn] and carrying
out some algebra

’ n ! T2 - r y
E[y"] = exp(-\/2) K%:.) N(_;_l_ N n'_vil’_kz_){ é_ n) E,J«r n)}

Fep.) T(wn)
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U51ng the substitutions ¥, = 2N, »; = 2pN, A = 2NA?K?* for values of n of 1
and 2 in this expression then enables Elz] and E[ z’] to be derived from

~N
"
|-

-1
y r

Although not carried out in detail the results are easily shown to be identical
to equations (39) and (40).

8. SOME PRACTICAL RESULTS
In order to give some idea of how to use the formulae, two steps were taken.

First, a program (program A in Appendix II) was developed to examine the variation
in the form of the density function as the number of spectra used to obtain an

average spectrum is increased. Results are shown in figure 1 for a moderately
high input signal-to-noise ratio of 5 dB, using 10 noise bins and a bin width of
1 Hz, ie p=10, r=1. It is surprising that even at this signal level the spread

in a number of estimates can be high. This spread should be compared with the
results in figure 2 for a much lower input signal-to-noise ratio of -5 dB. The
comparison indicates a necessity for a further detailed examination.

The second step taken was to develop a program (program B in the appendix} to
examine the variation with signal-to-noise ratio of the mean, standard deviation,
and coefficient of variation of the estimate for a specified number of bins used
to estimate noise power. Typical results for the mean and coefficient of vari-
ation are shown in figures 3 and 4 respectively, using p=10 and r=1 as in figure 1.
In figure 3 the bias (due to the assymetry of the distribution) is clear at even
high signal levels. At low signal levels it is obvious that it is necessary to
average a large number of spectra to minimise the bias in the mean. In figure 4
the behaviour in the coefficient of variation indicates the large number of spectra
to be analysed to keep the frequency of occurrence of negative estimates of
signal-to-noise ratio to a minimum. This need is of course going to conflict
with the non-stationarity of the statistics of any physical medium in which an
experiment is taking place such as when measuring acoustic signal transmission
properties in the ocean.

9. CONCLUSIONS

This paper presents a rigorous mathematical analysis and a brief look at some
experimental implications of a definition and associated measurement technique
of the signal-to-noise ratio of a sine wave in white noise. The computer
programs developed as a result of this analysis can be used to carry out a
detailed examination of any proposed experimental scenario. During the develop-
ment of the analysis it has appeared that the probability distribution function
for both signal plus noise and signal-to-noise ratio are both emenable to an
analysis that extends techniques reported in this paper and it is proposed to
publish results on this shortly. It is anticipated that this further work will
throw some interesting light on some of the problems of detection theory.
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APPENDIX I

MATHEMATICAL DETAILS

I.1 A general integral formula first due to Hankel(ref.4) H
o0
[ -1 F—;—V') @’ a?
| dt t" 7 exp(-p*t?) J (at) = ME_+? v+l ~3)
./0 N l"(v . 1) 2v + 1 pv + B —3 4 '4p

largpl<;-,Re(u+v)>o %

If the substitutionsa =y, v =0, u =2, p = JB  are made then

o0
f 1 7
J dt t exp(-ft’) J (yt) = F ML, -7 )
0
1 2
= % exp ()
from applying formula 13.6.12(ref.3). l

I[.2 An integral formula(ref.4), generally attributed to Sonine, for the ordinary
Bessel function is

Cajoo
i)’ 1 2
JV (z) = 3 /. dt—(?)-p+1 exp(t - ‘j‘—t‘)
i

where the path of integration is the straight line R¢(t) = C >0

If the substitutions ¥+1 = N, t = X8, z2 = Nyzx, C = A2 are made, then

N-1 | (N-1)/2 N )
m-1)/2 f @ ¥ exp(f - %’f‘)
A? - joo g

3., W) = L

2 7§ x

1.3 B-functions can be written in the integral form

oo q-1
B(p.q) = f Y

S ()P
0
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[T warry

Make the parameter substitutions

i q = n+N+r
P = pN-n

Then
p+q = pN+ N+

Hence
o0
yn+N—1+r
d = +N+r,pN-n
! f rvnaos B (neNer, pN-n)
0

as B(qu) = ﬁ (q:P)

s
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APPENDIX 11

COMPUTER PROGRAM

00020 ¢

00030 C333 EVALUATE SHNR PDF FOR ! 33853538832338388
00040 ¢ 1/Rey,

00058 ¢ N SPECTRA (XX.)

060 C P MOISE BINS (XX.)

0070 C GMAL TO MOISE RATIODD)

00080 CILSESLITLLLEILLRLLRELL22L22R22LLILISREL2S
00090 FUNCTION CHGF(A,C,2)

0100 S,

0110 Yel.

o012¢ Ny

0130 10 RNsN-1

0148 Ye¥R(Z/N)S(ARN )/ (C4RN)

00150 SleS

0160 SeSey

[ 2%y ) NeNei

90180 1F(N, LE 100.AMD.5.ME.5L) GO T0 10
00190 CHGF »5

00200 RETURN

%210 END

00226 CEESUSESELEETSERETAILLIITILIALILSILSSSSS
00230 REAL N,P,S5,Z2(320),LCDEN(320),DENC320)
00240 Z(1)s-1,

00250 Ret.

00260 URITE(6,108)

00270 READ(S,8) N,P,S

00280 $+10.83(5/19.)

9299 DO 1o I-1,320

00300 DaCNGF { (PENeN), (N), (NBSS(REZ(1)¢1, }/(RSZ(])ePe1.)))
00310 1F(D.LT.0.) GO TO 20

0920 D=ALOG(D)

90330 GO TO 25

00340 26 De-470G(ABS(D))
#0350 % CONTINUE

09360 LGDENCI )=ALOG(R I +PINSALOG(P)+(N-1.)3

o7t 1 ALOGIREZ(I)+1.)+ALCARA(PINN)-ALGANA(PEN)
0033¢ 1 -ALGARA(N)-(PIN+N)ISALOGIRSZ(T 14P+1.)
031 1 +D-NSS§

oo DE#11)EXP(LGDEN(]))

0410 10 20101 102(1)40.1

00420 S+19.3AL0G10(S)

2K URITE(6,200) §

Ay448 WITE(6,210)

00456 bo S I'l 320

00464 S0 WITE(6, 23) (1), DENCT)
00475 108 FORPAT( ' ENTER N,P,5 (REAL).
06445 200 FORMAT( S- ' FS 2)

00490 210 FORMAT( DEN’ )
00500 230 FORMAT(2(2X, ra 2,2%,F8.2))
00510 ST0P

00520 END

90920 ¢

00030 CEESSSRIZESRRRTIRIITLATRALSSLNTSIRSLSSIRIILLLTRS
00040 C COMPUTE COEFF. OF URARIATION, PEAN, S

00050 ¢ SMR ESTIMATION OF TONE IN WHITE MOISE

00068 C FROM AVERAGE SPECTRA.

0078 ¢ N SPECTRA

00080 C P NOISE BINS

[ WA ijibiredadtototstotsioqiesieediqitdidtettdts
0100 REAL §6(12),E2(12),52(32),C¢12),N

00110 Ret.

00120 Ke-40.

0013 URITE(6,100)

00146 100 FORMAT( ' ENT!I NP (REAL)...")

0150 READ(5,8) NP

00160 D0 10 fe1,12

0170 Xexe5,

018 $°10.28(X/10.)

0i% E2(1)oMEPR(1.+5)/(RE(PEN-1)1~1./R

00200 SZ(1)e(P/R)SSORT ( ((N332)3(5882)

”210 ) 2. SNR(PENON-1, )85+ (PR(NIS2)

ol +(N352)-M) )/ (((PEN-1.)282)8(PEN-2. 1))
w2 C(L)S2(I)IEUD)

060240 10 58¢])ex

00256 WRITE(G,200)

00260 200 FORMAT(’ §5 €z §2 c"
0270 DO 20 1-4,12

W28 e uam«s.:m $S(1),E2(1),82¢1H,C(1)
00290 00 FORMAT(2x,FS.2, 3(2)( I.Jn

00300 sT0P

0310 (1, ]
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Figure 1. Variation in the probability density function for the estimate of
signal-to-noise ratio from an average of N spectra using 10 noise
bins at an input signal-to-noise ratio of 5 dB
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Figure 3
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Figure 3. Deviation of the mean when using N spectra to estimate signal-to-

noise ratio for a 1 Hz bin width and using 10 noise bins for
estimating noise power
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Figure 4
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Figure 4. A demonstration of the effect of using N spectra to estimate signal-
to-noise ratio for a 1 Hz bin width and using 10 noise bins for
estimating noise power
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